Persistence of motor adaptation during constrained, multi-joint, arm movements.
نویسندگان
چکیده
We studied the stability of changes in motor performance associated with adaptation to a novel dynamic environment during goal-directed movements of the dominant arm. Eleven normal, human subjects made targeted reaching movements in the horizontal plane while holding the handle of a two-joint robotic manipulator. This robot was programmed to generate a novel viscous force field that perturbed the limb perpendicular to the desired direction of movement. Following adaptation to this force field, we sought to determine the relative role of kinematic errors and dynamic criteria in promoting recovery from the adapted state. In particular, we compared kinematic and dynamic measures of performance when kinematic errors were allowed to occur after removal of the viscous fields, or prevented by imposing a simulated, mechanical "channel" on movements. Hand forces recorded at the handle revealed that when kinematic errors were prevented from occurring by the application of the channel, recovery from adaptation to the novel field was much slower compared with when kinematic aftereffects were allowed to take place. In particular, when kinematic errors were prevented, subjects persisted in generating large forces that were unnecessary to generate an accurate reach. The magnitude of these forces decreased slowly over time, at a much slower rate than when subjects were allowed to make kinematic errors. This finding provides strong experimental evidence that both kinematic and dynamic criteria influence motor adaptation, and that kinematic-dependent factors play a dominant role in the rapid loss of adaptation after restoring the original dynamics.
منابع مشابه
Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives.
The motor control of the eight highly flexible arms of the common octopus (Octopus vulgaris) has been the focus of several recent studies. Our study is the first to manage to introduce a physical constraint to an octopus arm and investigate the adaptability of stereotypical bend propagation in reaching movements and the pseudo-limb articulation during fetching. Subjects (N=6) were placed inside...
متن کاملMuscle fatigue affects mental simulation of action.
Several studies suggest that when subjects mentally rehearse or execute a familiar action, they engage similar neural and cognitive operations. Here, we examined whether muscle fatigue could influence mental movements. Participants mentally and actually performed a sequence of vertical arm movements (rotation around the shoulder joint) before and after a fatiguing exercise involving the right a...
متن کاملA method for measuring endpoint stiffness during multi-joint arm movements.
Current methods for measuring stiffness during human arm movements are either limited to one-joint motions, or lead to systematic errors. The technique presented here enables a simple, accurate and unbiased measurement of endpoint stiffness during multi-joint movements. Using a computer-controlled mechanical interface, the hand is displaced relative to a prediction of the undisturbed trajectory...
متن کاملA method for measuring endpoint sti!ness during multi-joint arm movements
Current methods for measuring sti!ness during human arm movements are either limited to one-joint motions, or lead to systematic errors. The technique presented here enables a simple, accurate and unbiased measurement of endpoint sti!ness during multi-joint movements. Using a computer-controlled mechanical interface, the hand is displaced relative to a prediction of the undisturbed trajectory. ...
متن کاملRole of motor cortex in coordinating multi-joint movements: is it time for a new paradigm?
Reaching movements to spatial targets require motor patterns at the shoulder to be coordinated carefully with those at the elbow to smoothly move the hand through space. While the motor cortex is involved in this volitional task, considerable debate remains about how this cortical region participates in planning and controlling movement. This article reviews two opposing interpretations of moto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2000